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Abstract

Categorical data tables can be modeled as finite, atomic, Boolean al-
gebras. These models can be used to discover predictive rules in the data.
The rules can be expressed by a Boolean algebraic formula in a normalized
disjunctive form.

The attributes and their values define a maximal algebra, and there
exists a Boolean homomorphism from this to the algebra of actual data.
The homomorphism kernel can be determined and transformed into a
normalized disjunctive form. The predictive factors of all binary attributes
can be derived immediately from this kernel.

For attributes with more than two values a Boolean homomorphism
can be constructed from the maximal algebra to the part of the table which
contains the complement of the value to be determined. The predictive
factors are in the subset, of the kernel, which matches the atoms which
do contain the attribute-value.

The Boolean meets which predict an attribute-value are partially or-
dered, and this order can be determined by induction.
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1 INTRODUCTION

1 Introduction

This paper is about finding predictive factors or rules in categorical data.

As such it fits into the general context of data mining, knowledge discov-
ery, data analytics and machine learning, but also multi-variate data analysis,
empirical induction and maybe database theory. The field is very broad and
diverse, and no directly related work has been found. The methods and theory
discussed in this paper have been developed independently.

This method of finding rules is limited to categorical data, which are struc-
tured or formatted as a table of attribute-values, like the table in section 5.
Each attribute may have two or more different values.

The goal is to be able to determine, for any attribute-value, the other
attribute-values which predict the selected value. The format of predictive fac-
tors or rules is a disjunction (or) of conjunctions (and). For example, ((A) or
(B and C) or (B and D)) implies E. See 5.

The rules are not statistical or probabilistic by nature, but totally determin-
istic. They are found by modeling the data table as a Boolean algebra, defining
a maximal or theoretical Boolean algebra which is determined solely by the at-
tributes and their values, and a Boolean homomorphism from this to the actual
table.

The homomorphism kernel, calculated by applying De Morgan’s law to the
data table (algebra), is in conjunctive form, a meet of joins of attribute-values.

This conjunctive form can be rewritten as a disjunctive form, a join of meets.
In the process of rewriting, the expression is normalized by using the fact that
any values of the same attribute are disjunct.

This simplification through normalization of a Boolean expression is the
basis of the data analytics.

Rules for binary attributes can be found from the normalized kernel through
elementary Boolean algebra, almost by direct querying.

Rules for attributes with more than two values cannot be found in this way.
It is, however, possible to define a homomorphism on that part of the table
which does not contain the value. The kernel of this homomorphism can then
be compared to the part of the table which does contain the value, and those
meets (and) which match are those which make up the join (or).

The structure of the paper is as follows. Section 2 is about the application
of the theory of Boolean Algebras to categorical data tables.

Subsection 2.1 discusses how a set of things may be fit into a set of attributes
and discrete values and how this may be modeled as a finite, atomic, Boolean
algebra. Subsection 2.2 details how a data table defines such an algebra, with
the table rows as atoms. In subsection 2.3 a mazimal Boolean algebra is defined
from the attributes and their values only. Subsection 2.4 defines a function from
the maximal algebra (table) to the actual algebra (table) and shows that it is a
Boolean homomorphism.

Section 5 discusses the application to data analytics. The kernel of the homo-
morphism is just the Boolean complement (in the maximal algebra) of the data
algebra. From this, after normalizing, the predictive factors for binary attributes
follow almost directly (subsection 2.1) and those for values of other attributes
by calculating (and normalizing) the kernel of another homomorphism. This
kernel is the complement in the maximal algebra, of the complement of the
attribute-value in the data algebra (subsection 3.2). Finally, in subsection 3.3
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2 BOOLEAN ALGEBRAS

the (possible) partial order of the meets in the join is discussed, together with
a simple, brute force, algorithm to find it. Transforming a meet of joins into a
join of meets and normalizing it involves comparing all attribute-values. A brute
force computation would be of exponential order and subsection 4.1 discusses a
heuristic approach and its implementation in Haskell.

Section 5 shows the results of the application on a very well known, small,
data table. Section 6 sums up a few conclusions.

2 Boolean Algebras

2.1 Finite Boolean Algebra

Let X be a finite or infinite set and P(X) the set of subsets of X. Then P(X)
is a Boolean Algebra, defined by join (V), meet (A) and complement ('). Let V
be a finite set of values of an attribute a where

1. each element of X belongs to some v € V,
2. no element of X belongs to more than one v € V,

In other words, attribute a defines an equivalence relation on the set X, and the
values define a partition. The subsets of X, denoted by the values, are elements
of a subalgebra of P(X). A Boolean join in this algebra is the union of the
sets denoted by the values, a complement is the union of the disjunct subsets
and the meet of the intersection, which is the empty set, is 0 in the Boolean
algebra.. Let b be another attribute, which also defines an equivalence relation
on X. Now we can define Boolean meet, join and complement through the sets
denoted by the values of both attributes. The meet of a; and b;, for example,
would be the intersection of the corresponding sets in X, which is the Boolean
meet in P(X).

A set of attribute values, defined by the sets V,, Uy, W, ... of each attribute
a,b,c...in a finite set A of attributes define a finite subset of elements of the
Boolean Algebra P(X).

Such a subset E corresponds to a subalgebra of P(X). This (finite) boolean
algebra is atomic, and each of its elements can be written as a join of atoms.

Let i € P(X) and j € {0,1}. Let p(i,j) =¢if j =1 and p(i,j) =" if j = 0.

An atom is
pr = N\ pl, f(i)
i€k
where f is a function from E to {0,1} and py # 0. Each atom is is a meet of
either an element ¢ or its complement. If the number of atoms of the subalgebra
generated by E is n, the number of elements is 2.
See [1] for an extensive treatment.

2.2 Data Algebra

Let T be a table with n rows and m columns, where each column represents an
attribute, and each cell is a value of the attribute in its column.

If each attribute-value denotes a subset of a set X, as discussed in 2.1, each
attribute defines a partition of this set. The Boolean join of all values of an
attribute is 1 in P(X). A meet of values of the same attribute is 0.
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2.3 Maximal Algebra 2 BOOLEAN ALGEBRAS

A row in T denotes the intersection of the subsets that are denoted by the
attribute-values in the row. This defines their Boolean meet. Each row has
exactly one value for each attribute. Therefore, an intersection with any set
denoted by any value not in the row is the empty set (0 in the corresponding
Boolean algebra). So the rows are the smallest elements in the subalgebra of
P(X) defined by the table. Since n is finite, the Boolean algebra defined by T'
is finite, and the rows denote the atoms.

2.3 Maximal Algebra

Usually the number of possible table rows, using only the attributes and values
of the table, will be larger than the actual number of rows. The number is

bounded by
n = H ko

where k, is the number of values of attribute a. For example, if attribute a has
2 values, attribute b has 10 and ¢ has 3, the maximal number of rows is 60. This
mazimal table also defines a Boolean algebra.

In disjunctive normal form, as a join of meets, the maximal element 1 is
written as the join of all possible rows, which are meets of attribute-values.
These are the atoms.

In conjunctive normal form, as a meet of joins, the maximal element 1 is
written as the meet of the joins of all values of each attribute. For the above
example:

1:(0,1\/ag)/\(bl\/bQ\/...blo)/\(Cl\/Cg\/Cg)

Each of the joins, in this notational form, is also 1.

2.4 Boolean Homomorphism

The set of rows of a table T is a subset of the rows of its maximal table M.
Each of these sets is the set of atoms of the corresponding Boolean algebras.
Let f be the function from M to T such that, if x is an atom,

vifrxeT
f(x)_{Oifxng

If = is not an atom, then it is a join of atoms w,; and:

flz) = f(\/ u;) = \/f(ui)

Because any f(u;) evaluates to either itself or 0, f(x) = x for any . On the
left x stands for an element in M, on the right it is in 7.

To show that f is a Boolean homomorphism from M to T it is sufficient (see
[1]) to show that, for each = and y,

flevy) = f@)Vfy) (1)
f@) = (f(=))
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3 DATA ANALYTICS

The first equation is satisfied by definition. To show the second part, divide an
element x into atoms that are elements of T' and those that are not.

z=(\/u)Vv(\v;)
( J
The complement =’ may be split the same way

= (\/ wg) V (\/ 21)
k 1

Both Boolean algebras are finite, so @ + j + k + [ is the number of atoms of
M and i + k is the number of atoms of T'. The joins of v and v are disjunct,
because one is part of z, and the other of the complement of x (in M).

flx) = \/f<ui) Vo= \/f<ui) = \/ui

F@) =\ fwr) v o =\/ flwy) =\ wy
k k k
Because in the Boolean algebra T,

(Vui) v (\wn) =1
% k

equation 2 is satisfied, and the function f is a homomorphism.

3 Data Analytics

The kernel K of f is the join of those atoms (rows) of M which do not occur in
T. This is the complement, in M, of those atoms (rows) which do occur in 7.
It can be calculated by applying De Morgan’s laws.

The resulting formula is in conjunctive form, a meet of joins. This can be
transformed into disjunctive normal form by comparing all attribute-values and

simplifying through
i
a; \a; = {az tJ !

0if j#1i
A join can only be 0 if each element in the join is 0. De value of f(K) is 0, so

f@ Ay A...)=0 for each meet in the normalized kernel K.
For any x and y in a Boolean algebra ([1])

r<yiffz Ay =0

3.1 Binary Attributes

If an attribute has two values, the complement of each is the other attribute-
value. So, for any a1, it is a simple matter to lookup the meets with as in the
normalized kernel. For example, if

(x ANag)V

(y Aaz) VvV
(zNaz)=0
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3.2 More than Two Values 3 DATA ANALYTICS

then

z < a; and
y < a; and

z <

If two Boolean elements are both smaller than a third, their join is also
smaller ([1]), so the result is:

(zVyVz)<a

3.2 More than Two Values

If an attribute has more than two values, the elements smaller than (or equal
to) its complement can also be found by querying the kernel K. For example,
if @ has three values, then, if A ay = 0 then z < (a1 V a3).

Because a1 = (a1 V as) A (a1 V az) the meets covered by a; could be found
by calculating the meet of the joins covered by the complements. A somewhat
easier way, however, is to use a different homomorphism.

If a has n values, then, to calculate the join of meets below a;, take those
atoms (rows) of T that do not contain a;. These atoms (rows) define a Boolean
algebra C, and a homomorphism may be defined from M to C, as discussed in
2.4. The kernel L is the complement in M of the atoms (rows) of C.

But this consists not only of the atoms not in 7', but also of the atoms which
are in T', but not in C. These, however, are the atoms which contain a;.

The kernel L is easily calculated, as a meet of joins, through De Morgan’s
law and may then be rewritten as a normalized join of meets. For each of these
meets it can then be checked whether they cover an atom with a; or not. A
meet covers an atom if the set of its values is a subset of the set of values which
make up the atom.

The number of values of any attribute is, of course, limited by the number
of atoms. A special case is a table where each row has a unique identifier. The
rows could list distinguishing properties of some object or concept, the name
of which is in a special column. Or the identifier could be the name of an
individual, with the row itself a list of associated data.

The algorithm also works for binary attributes, but a different homomor-
phism kernel needs to be recalculated into disjunctive normal form for each
separate attribute-value. This takes computing resources. Querying the same
normalized kernel, as described in 3.1, is obviously preferable.

3.3 Partial Order

In the join of meets in the formula
(xvyVvzv..) <a;
each meet z,y ... has at most one value of any attribute. It is an element of the

Boolean algebra T, so it is a join of atoms. Any atom is a meet of attribute-
values, with exactly one value for each attribute.
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4 IMPLEMENTATION

For any w,v in a Boolean algebra, u A v < v. So, if u A v is a meet of
attribute-values, it is smaller than (or equal to) a meet v of attribute-values
from a subset of the attribute-values which make up u A v.

Conversely, if v consists of some set of attribute-values, and r is a meet of a
superset, then as 7 = v A u for some u.

Let B be the set of attribute-values in meet x and R; the set of attribute-
values in atom ;. Then

r>r iff BC Ry

So, the atoms below a meet of attribute-values x are exactly those whose
attribute-values are supersets of the attribute-values of x.
All the meets in
(xvyVvzv..) <a;

are joins of atoms (of T') below a;. Suppose,

r=r1VraVry and

y=rVr

In this case y < x. If x and y cover the same atoms, then = = y.
In general, if the set of atoms which make up the join equal to z is X, and
the set which makes up the join equal to y is Y, then

r<y iff XCVY

The meets of attribute-values below some attribute-value are partially ordered.
Particularly interesting are the meets at the top, which have no larger elements
besides a; and those at the bottom, which have no smaller elements besides O.

The algorithm is a kind of empirical induction. In the classic example, if the
set of things which are ravens is a subset of the set of things which are black,
then ravens are black.

4 Implementation

4.1 Transforming a Meet of Joins into a Join of Meets

It makes sense to code an attribute-value as a tuple of an index into an array
of attributes, and an index into an array or list of its values. Comparisons of
attribute-values can then be fast. In particular, a meet of two values of the
same attribute can be seen to be 0 if the firsts of their index tuples are equal
and the seconds unequal.

To transform a meet of joins into a join of meets, each attribute-value in
each join must be compared with each attribute-value in each other join.

So, if the number of joins is m and the number of attribute-values in each
join is n, the number of comparisons is n™. However, if v is an attribute-value in
a meet of joins then that meet may be partitioned into joins with v and without
v. Let rs be the meet of joins which do not contain v. Then,

(vVa)AVy A--Ars=@wV(xAyA...))Ars=(vArs)V(xAyATs)

But z Ay Ars is just the original meet of joins with attribute-value v removed.
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4.2 Induction of Partial Order 4 IMPLEMENTATION

The process of removing an attribute-value can be repeated until one of the
joins x,y ... becomes empty. Then that join is 0 and any meet with that row
is 0. The meet of joins reduces to a join,

(vp ATs1)V (Vg ATsg)V---VO

Now the process of partitioning in joins with some attribute-value and joins
without that value can be applied to each rest rs; as well.

It seems reasonable that the number of comparisons will be smaller if the
number of joins in each rs is smaller. This will be the case when the frequency
of occurrence of v will be greater, since an attribute-value occurs at most once
in any row.

The partitioning of a meet of joins rs terminates when the value v occurs in
all the joins and, therefore, the set of joins without v is empty.

However, it is also possible that a meet of joins rs is not empty, but contains
a join (row) consisting only of values of the same attribute as v.

v AN(wjVug...)=0

for different 4, j,k.... In that case rest rs, which is a meet, will also be 0, and
so will v; A rs.

The above suggests an intermediate tree data structure, with an attribute-
value as node, and a list of trees as children. The leaves of the tree are the
empty lists or some mark to denote failure of the meet.

Extracting all the branches of the tree, leaving out the ones marked as 0,
results in a join of meets.

Next, each meet will have to be compared with all other meets to be able to
apply the cancellation law

xV(zAhy) ==

A list (forest) of trees as sketched above can be built quite naturally, using
mutual recursion, in the functional programming language Haskell [2]. The
success or failure of building a meet (branch) can be modeled with the standard
Maybe data type. Haskell also has powerful constructs for list processing and
filtering, and the transformation of a meet of joins to a join of meets, as sketched
above, could be implemented in approximately 100 lines of Haskell code.

4.2 Induction of Partial Order

The meets of attribute-values below some attribute-value all cover those rows of
the data table which contain the predicted attribute-value. So, for each meet,
determine the rows (atoms) whose set of attribute-values is a superset of the set
of attribute-values of the meet.

Two different meets may cover the same atoms, in which case they are equal
(both z < y and y < x). The first step is to determine which meets are equal.
These equivalence classes are the nodes in the poset graph.

One node is below another, iff the set of atoms it covers is a subset of the
set of atoms covered by the second. For this to be the case, the second set must
be larger than the first (equals are in the same node). So, if the set of nodes
are ordered according to size (list length) of the atoms they cover, a node only
has to be checked against a later (larger) node.
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5 DATA ANALYSIS: AN EXAMPLE

’ Weather \ Temperature | Humidity \ Windy \ Fishing

sunny hot high no bad
sunny hot high yes bad
cloudy hot high no good
rain mild high no good
rain cool normal no good
rain cool normal yes bad
cloudy cool normal yes good
sunny mild high no bad
sunny cool normal no good
rain mild normal no good
sunny mild normal yes good
cloudy mild high yes good
cloudy hot normal no good
rain mild high yes bad

Table 1: The well known data table from Quinlan [3]

From this list of larger nodes, only the adjacent ones are second nodes in the
edge. These can be found by removing all nodes whose atoms are supersets of
any other node. This process of determining edges for a node is then repeated
for each node in the list of nodes. For this to work, the predicted attribute-
value, which covers all meets, must be in the list. Because the list is sorted by
the number of covered atoms, it will be at the end.

Using the Haskell functional graph library, it is straightforward to construct
a directed graph from nodes and edges, and display it in a basic GraphViz
format. Because a node contains all equals, the resulting graph of the partial
order is acyclic. Furthermore, because it contains the predicted attibute-value,
it is a tree.

5 Data Analysis: an Example

The above table is taken from Quinlan [3]. The number of rows, and therefore
the number of atoms in its Boolean algebra is 14. There are 5 attributes, 3
binary and 2 with 3 values, so the number of atoms in the maximal algebra is
23 x 32 =T72.

The table was read in .csv format and automatically coded as listed below.

--- tableToArray --—-

array (0,4) [

(0, ("Weather", ["sunny", "cloudy","rain"])),
(1, ("Temperature", ["hot","mild","cool"])),
(2, ("Humidity", ["high","normal"])),

(3, (Ilwindyll , [llnoll , llyesll] )) ,

(4, ("Fishing", ["bad", "go0d"1))]

For brevity the coded symbols will be used instead of the names. The following
is the Boolean complement of the table in conjunctive form. So, each row is a
join of the attrinute-values, and the table is a meet of these rows.
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5 DATA ANALYSIS: AN EXAMPLE

--- compTable ---

[[(3,1),(0,1),(4,1),(0,2),(1,1),(1,2),(2,1D1,
[(3,0),(0,1),(4,1),(0,2),(1,1),(1,2),(2,11,
[(0,0),(4,0),(3,1),(0,2),(1,1),(1,2),(2,1)],
[(0,0),(1,0),(4,0),(3,1),(0,1),(1,2),(2,1)]1,
[(0,0),(1,0),(2,0),(4,0),(3,1),(0,1),(1,1)],
[(0,0),(1,0),(2,0),(3,0),(0,1),(4,1),(1,D],
[(0,0),(1,0),(2,0),(3,0),(4,0),(0,2),(1,1)],
[(1,0),(3,1),(0,1),(4,1),(0,2),(1,2),(2,11,
[(1,0),(2,0),(4,0),(3,1),(0,1),(0,2),(1,1)],
[(0,0),(1,0),(2,0),(4,0),(3,1),(0,1),(1,2)],
[(1,0),(2,0),(3,0),(4,0),(0,1),(0,2),(1,2)],
[(0,0),(1,0),(3,0),(4,0),(0,2),(1,2),(2,1)1,
[(0,0),(2,0),(4,0),(3,1),(0,2),(1,1),(1,2)],
[€(0,0),(1,0),(3,0),(0,1),(4,1),(1,2),(2,1)]1]

This is transformed into a normalized join of meets, using an implementation
of the algorithm discussed in 4.1. Each line is a meet of attribute-values. The 9
lines with Fishing:bad (4,0) and the 5 with Fishing:good (4,1) have been marked
manually for the reader’s convenience.

—--- meetsToJoins —--

[[(1,2),(2,0)],

[(0,1),(4,00], X
[(1,2),(0,1),(3,00],
[(1,2),(4,0),(3,0)], X
[(1,2),(4,0),(0,0)], x
[(1,2),(0,0),(3,1)],
[(0,2),(3,1),(4,1], X
[(0,1),(1,1),(2,1D],
[¢0,1),(1,1),(3,001,
[(0,1),(3,1),(1,0)],
[(1,0),(3,1),(2,1],

[(1,0),(0,2)],

[(1,0),(3,1),(4,D], X
[(1,0),(2,1),(4,00], b'q
[(1,0),(2,1),(0,0)1,
[(1,0),(0,0),(4,1)]1, X
[(0,0),(4,1),(2,0)], X
[(4,0),(2,1),(1,D], X
[¢0,0),(1,1),(4,0),(3,11, X
[(0,0),(1,1),(3,0),(2,1)],
[(0,0),(1,1),(3,0),(4,1)]1, x
[(0,0),(1,1),(2,0),(3,1)],
[(0,0),(2,1),(4,0)], X
[(4,0),(2,1),(3,00], X
[¢0,2),(3,1),(2,1),(1,1],
[(0,2),(4,0),(3,0)]] x

Since Fishing is a binary attribute, the two values 4, 0) and (4, 1) are each other’s
complements, and the dependencies can just be read out from the listing.
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5 DATA ANALYSIS: AN EXAMPLE

For example,

(0,1) A (4,0) =0
(0,1)A(4,1) =0
(0,1) < (4,1)

which translates into Weather:cloudy implies Fishing:good. The other rules for
Fishing can be found similarly.
Of course, the following reasoning is also possible,

(0,1) A (4,0) = 0
(0,1)' A (4,0) = 0
(4,0) < ((0,2) v (0,3))

which means Fishing:bad implies Weather:sunny or Weather:rain. In other
words, bad fishing implies the weather is not cloudy, the logical contraposition
of the statement cloudy = good. Dependencies of the other binary attributes
can be found similarly. For example,

(1,0)A(3,1)A(2,1) =0

So, Temperature:hot and Windy:yes implies Humidity:normal.

The Boolean meets which determine the values of attributes with more than
two values cannot be found this way, only complements. But these can be found
with a Boolean homomorphism of M to the algebra C' which does not contain
that value, as discussed in 3.2.

For (0,1) (Weather:cloudy) C is,

--- table wihout (0,1) ---
[[(0,0),(1,0),(2,0),(3,0),(4,0)],
[(0,0),(1,0),(2,0),(3,1),(4,0)],
[(0,2),(1,1),(2,0),(3,0),(4,D],
[(0,2),(1,2),(2,1),(3,0),(4,1)],
[(0,2),(1,2),(2,1),(3,1),(4,0)],
[(0,0),(1,1),(2,0),(3,0),(4,0)],
[(0,0),(1,2),(2,1),(3,0),(4,1)],
[(0,2),(1,1),(2,1),(3,0),(4,D],
[(0,0),(1,1),(2,1),(3,1),(4,D],
[(0,2),(1,1),(2,0),(3,1),(4,0)]11]

As before, each row is a join of attribute-values, and the table is the meet of the
rows. The kernel of the homomorphism of M to C, rewritten and normalized
as join of meets, is:

--- meets to joins ---

(fco, 11, X
[(1,0),(4,1)], X
[(1,0),(2,11, x

[(1,0),(0,2)1,
[(1,2),(2,001,
[(1,2),(4,0),(3,01,
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5 DATA ANALYSIS: AN EXAMPLE

[(1,2),(4,0),(0,0)],

[(1,2),(3,1),4,1], x
[(1,2)7(3’1),(0’0)]’
[@3,1),(4,1),(2,0)], X

[(3,1),(4,1),0,2],
[(2,1),4,0,1,1],
[(2,1),(4,0),0,01,
[3,1),(2,1),00,2),(1,11,
[(3,1),(0,0),(4,0),(1,1)]1,
[(3,1),(0,0),(2,0),(1,1)],
[(4,1),(2,0),(0,0)],
[(4,1),(0,0),(3,0),(1,1)]1,
[(2,1),(4,0),(3,01,
[(2,1),00,0),(3,0),(1,1)]1,
[(4,0),(3,0),(0,2)]1]

The meets in this join which cover one of the four atoms of 7" which do contain
(0,1) are the ones marked above. The set of attribute-values of each meet is a
subset of the set of attribute-values of one or more of those atoms..

--- reduce (0,1) --—-
[[CO,DT,
[(1,0),(4,D1],
[(1,0),(2,D],
[(1,2),@3,1),4,1],
[(3,1),(4,1),(2,0)]]

It can easily be checked in the original data table that, for example, Tempera-
ture:hot together with Humidity:normal indeed imply Weather:cloudy.

Of course the general algorithm for attribute-values can also be applied to
binary attributes. For Fishing:bad, for example, the result is,

--— reduce (4,0) ---
[[(4,00],
[(0,0),(2,0)],
[(0,0),(1,0)],
[(0,0),(3,00,(1,1D],
[(1,0),(3,D],
[(3,1),(0,2)]]

These are the same 5 meets which are found by querying the kernel of the
homomorphism to the algebra 7', as shown above. Their partial order can be
found by induction, as discussed in 3.3 and 4.2. It is shown in the figure.

There are no equals, each node consists of just one meet. There are two
least general meets, Temperature:hot and Windy:yes and Weather:sunny and
Windy:no and Temperature:mild. There are also two most general meets, Windy:yes
and Weather:rain and Weather:sunny and Humidity:high. All imply Fishing:bad
which is at the root.
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([(1,0),(3,1)]]

[[(0,0),(3,0),(1,1)]] [[(0,0),(1,0)]]

[[(0,0),(2,0)]]

Figure 1: The partial order of the meets predicting Fishing:bad

6 Conclusions

Categorical data tables can be modeled as Boolean algebras, and these models
can be used to derive predictive rules. Having a clear and distinct mathematical
model for the data which are to be analyzed is, in itself, very useful.

The results are not probabilistic or statistical, but deterministic. The format
of the predictive rules, a join (or) of meets (and) of attribute-values is natural.

The theory of Boolean algebras provides a mathematical toolbox for further
research and development. Subjects of interest are, among others, analysis of
data tables where each row has a unique identifier (concept analysis), expansion
of an algebra by adding new attributes, the effects of adding or deleting rows to
an existing table, and the analysis of the complement (the unobserved data).
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